Formation of ciprofloxacin nanocrystals within liposomes by spray drying for controlled release via inhalation

[Display omitted] The present study was conducted to harness spray drying technology as a novel method of producing Ciprofloxacin nanocrystals inside liposomes (CNL) for inhalation delivery. Liposomal ciprofloxacin dispersions were spray dried with sucrose as a lyoprotectant in different mass ratios...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2020-03, Vol.578, p.119045-119045, Article 119045
Hauptverfasser: Khatib, Isra, Tang, Patricia, Ruan, Juanfang, Cipolla, David, Dayton, Francis, Blanchard, James D., Chan, Hak-Kim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The present study was conducted to harness spray drying technology as a novel method of producing Ciprofloxacin nanocrystals inside liposomes (CNL) for inhalation delivery. Liposomal ciprofloxacin dispersions were spray dried with sucrose as a lyoprotectant in different mass ratios (0.5:1, 1:1 and 2:1 sucrose to lipids), along with 2% w/w magnesium stearate and 5% w/w isoleucine as aerosolization enhancers. Spray drying conditions were: inlet air temperature 50 °C, outlet air temperature 33–35 °C, atomizer rate 742 L/h and aspirator 35 m3/h. After spray drying, the formation of ciprofloxacin nanocrystals inside the liposomes was confirmed by cryo- transmission electron microscopy. The physiochemical characteristics of the spray dried powder (particle size, morphology, crystallinity, moisture content, drug encapsulation efficiency (EE), in vitro aerosolization performance and drug release) were determined. The EE of the liposomes was found to vary between 44 and 87% w/w as the sucrose content was increased from 25 to 57% w/w. The powders contained partially crystalline particles with a volume median diameter of ~1 µm. The powders had low water content (~2% wt.) and were stable at high relative humidity. Aerosol delivery using the Osmohaler® inhaler at a flow rate of 100 L/min produced an aerosol fine particle fraction (% wt.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2020.119045