Density Functional Theory Investigation of Nonlinear Optical Properties of T‑Graphene Quantum Dots

Using density functional theory calculations, we have analyzed nonlinear optical properties of a series of T-graphene quantum dots differing in their shape and size. Electronic polarizability and first-order and second-order hyperpolarizability of these systems are investigated and shed light on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2020-02, Vol.124 (7), p.1312-1320
Hauptverfasser: Deb, Jyotirmoy, Paul, Debolina, Sarkar, Utpal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using density functional theory calculations, we have analyzed nonlinear optical properties of a series of T-graphene quantum dots differing in their shape and size. Electronic polarizability and first-order and second-order hyperpolarizability of these systems are investigated and shed light on their stability and electronic properties. Negative cohesive energy shows that they are energetically stable. The effect of size and incident frequency on their nonlinear responses are comprehensively discussed. Most of the systems exhibit a strong NLO response, and it is enhanced in the presence of an external field. All these systems show absorption maximum ranging from UV to visible window. Overall, this theoretical framework highlighted the nonlinear optical properties of T-graphene quantum dots that may provide valuable information in designing potential NLO materials.
ISSN:1089-5639
1520-5215
DOI:10.1021/acs.jpca.9b10241