Ameliorative effect of naringin against thiram-induced tibial dyschondroplasia in broiler chicken

Tetramethyl thiuram disulfide (thiram) is widely used in agricultural production as an insecticide and fungicide, which can also lead to tibial dyschondroplasia (TD) in poultry. TD is characterized by leg disorders and growth performance retardation, and no targeted drugs have been found to treat TD...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020-04, Vol.27 (10), p.11337-11348
Hauptverfasser: Jiang, Xiong, Li, Aoyun, Wang, Yaping, Iqbal, Mudassar, Waqas, Muhammad, Yang, Hao, Li, Zhixing, Mehmood, Khalid, Qamar, Hammad, Li, Jiakui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tetramethyl thiuram disulfide (thiram) is widely used in agricultural production as an insecticide and fungicide, which can also lead to tibial dyschondroplasia (TD) in poultry. TD is characterized by leg disorders and growth performance retardation, and no targeted drugs have been found to treat TD until now. Therefore, the objective of the present study was to explore the ameliorative effect of traditional Chinese medicine naringin on thiram-induced TD chickens. A total of 180 one-day-old Arbor Acres (AA) broiler chickens were randomly divided into three equal groups ( n  = 60): control group (standard diet), thiram-induced group (thiram 50 mg/kg from day 3 to day 7), and naringin-treated group (naringin 30 mg/kg from day 8 to day 18). During the 18-day experiment, the growth performance, tibial bone parameters, antioxidant property of liver, serum biochemical changes and clinical symptoms were recorded to evaluate the protective effect of naringin in thiram-induced TD broiler chickens. Additionally, mRNA expressions and protein levels of Ihh and PTHrP genes were determined via quantitative real-time polymerase chain reaction and western blot. Administration of naringin showed significant results by alleviating lameness, increased growth performance, recuperated growth plate (GP) width, and improved functions and antioxidant enzyme level of liver in broilers affected by TD. Moreover, naringin treatment restored the development of damaged tibia bone via downregulating Ihh and upregulating PTHrP mRNA and protein expressions. In conclusion, our study determines naringin could be used as an effective medicine to treat TD.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-07732-5