Analysis of vismodegib resistance in D473G and W535L mutants of SMO receptor and design of novel drug derivatives using molecular dynamics simulations
Vismodegib is an effective antagonist of smoothened receptors for treatment of locally advanced or metastatic basal cell carcinoma. However, it often suffers from drug resistance due to mutations. Two common mutants, D4736.55G and W5357.55L, were found to cause serious drug resistance. Although the...
Gespeichert in:
Veröffentlicht in: | Life sciences (1973) 2020-03, Vol.244, p.117302-117302, Article 117302 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vismodegib is an effective antagonist of smoothened receptors for treatment of locally advanced or metastatic basal cell carcinoma. However, it often suffers from drug resistance due to mutations. Two common mutants, D4736.55G and W5357.55L, were found to cause serious drug resistance. Although the reduction of drug binding affinity (~40-fold) was thought to be the major reasons, the detailed structural, energetic and dynamic mechanisms at the molecular level are still unknown.
Molecular dynamics simulations and molecular mechanics-generalized Born surface area (MM-GBSA) binding energy calculations were performed on three complex systems of wild-type (WT) and two mutants with vismodegib. Then, virtual screening was used to select three potential derivatives of vismodegib from the 77 new derivatives designed by modifying the substitutions on the phenylpyridine ring of vismodegib.
The MM-GBSA binding energy data of the two mutants showed a significant reduction in binding affinity. The energy decomposition identified that the key contributing residues were in the binding site. The D4736.55G mutant affected the binding of the ligand by directly changing the conformations of the key residues in TM6, while the W5357.55L mutant mainly depended on long range allosteric effect. More importantly, the methylsulfonyl benzamide moiety was identified to be the pharmacophore of the ligand, and two of the three derivatives from the virtual screening showed much higher MM-GBSA binding affinity to the two mutants than vismodegib did.
These results might help to understand resistance mechanisms and the two derivatives can be good candidates for future experiments. |
---|---|
ISSN: | 0024-3205 1879-0631 |
DOI: | 10.1016/j.lfs.2020.117302 |