Cyanobacterial sigma factors: Current and future applications for biotechnological advances
A sigma (σ) factor is a constituent of bacterial RNA polymerase that guides the holoenzyme to promoter sequences and initiates transcription. In addition to a primary housekeeping σ factor, bacteria contain a number of alternative σ factors which recognize a specific set of promoters. By replacing t...
Gespeichert in:
Veröffentlicht in: | Biotechnology advances 2020-05, Vol.40, p.107517-12, Article 107517 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A sigma (σ) factor is a constituent of bacterial RNA polymerase that guides the holoenzyme to promoter sequences and initiates transcription. In addition to a primary housekeeping σ factor, bacteria contain a number of alternative σ factors which recognize a specific set of promoters. By replacing the primary σ factor with alternative variants, the cell controls transcription of the whole sets of genes, typically to acclimate to changes in the environment. As key regulatory elements, σ factors are frequent targets of genetic manipulation aimed at the improvement of bacterial stress tolerance and capacity for bioproduction. Cyanobacteria are a phylum of bacteria capable of oxygenic photosynthesis and there is a great interest to employ them as biochemical and biofuel production hosts. Engineering of σ factor genes has become an important strategy to improve robustness and suitability of cyanobacteria for the production of high-value metabolites such as polyhydroxybutyrate, succinate, sucrose or hydrogen. Here, we summarize the current knowledge about the regulatory role of different σ factor classes in cyanobacteria, highlighting their biotechnological potential. |
---|---|
ISSN: | 0734-9750 1873-1899 |
DOI: | 10.1016/j.biotechadv.2020.107517 |