Simple laser transmitter pair as polarization-independent coherent homodyne detector

Coherent optical reception promises performance gains for a wide range of telecom applications and photonic sensing. However, the practical implementation and the particular realization of homodyne detection is by no means straight-forward. Local oscillator requirements and polarization management n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2019-05, Vol.27 (10), p.13942-13950
Hauptverfasser: Schrenk, Bernhard, Karinou, Fotini
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coherent optical reception promises performance gains for a wide range of telecom applications and photonic sensing. However, the practical implementation and the particular realization of homodyne detection is by no means straight-forward. Local oscillator requirements and polarization management need to be cost-effectively supported for accurate signal detection at high sensitivity, preferably without relying on digital processing resources. Towards this direction we propose a conceptually simple, laser-based homodyne receiver. We exploit the injection locking of a pair of externally modulated lasers that simultaneously serve as optically synchronized local oscillators and photodetectors in a polarization-diversity analogue coherent receiver arrangement. We demonstrate signal detection at 2.5 Gb/s over an optical budget of 35 dB and a dynamic range of >20 dB. Long-term measurements over field-installed fiber confirm the correct operation independent of the polarization state of light. Stability considerations for the injection locking process are drawn in view of even higher loss budgets.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.013942