Biodegradation of microcystin-RR and nutrient pollutants using Sphingopyxis sp. YF1 immobilized activated carbon fibers-sodium alginate

A novel biological material named activated carbon fibers-sodium alginate@ Sphingopyxis sp. YF1 (ACF-SA@YF1) was synthesized for microcystin-RR (MC-RR) and nutrient pollutant degradation in eutrophic water. The synthesized biomaterial was characterized by scanning electron microscopy (SEM). Box-Behn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2020-04, Vol.27 (10), p.10811-10821
Hauptverfasser: Ren, Guofeng, He, Xinghou, Wu, Pian, He, Yayuan, Zhang, Yong, Tang, Shibiao, Song, Xinli, He, Yafei, Wei, Yuandan, Ding, Ping, Yang, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel biological material named activated carbon fibers-sodium alginate@ Sphingopyxis sp. YF1 (ACF-SA@YF1) was synthesized for microcystin-RR (MC-RR) and nutrient pollutant degradation in eutrophic water. The synthesized biomaterial was characterized by scanning electron microscopy (SEM). Box-Behnken design and response surface methodology (RSM) were utilized for the optimization of conditions during the MC-RR degradation. The degradation of MC-RR and nutrient pollutants was dynamically detected. The results revealed that the optimal conditions were temperature 32.51 °C, pH 6.860, and inoculum 14.97%. The removal efficiency of MC-RR, nitrogen, phosphorus, and chemical oxygen demand were 0.76 μg/mL/h, 32.45%, 94.57%, and 64.07%, respectively. In addition, ACF-SA@YF1 also performed satisfactory cyclic stability, while the MC-RR removal efficiency was 70.38% after seven cycles and 78.54% of initial activity after 20 days of storage. Therefore, it is reasonable to believe that ACF-SA@YF1 is an effective material which has a great prospect in removing MC-RR and nutrients from freshwater ecosystems.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-020-07640-8