Real-Time Monitoring of the Oxidation Characteristics of Antarctic Krill Oil (Euphausia superba) during Storage by Electric Soldering Iron Ionization Mass Spectrometry-Based Lipidomics

Antarctic krill oil (AKO) is susceptible to oxidation due to the high unsaturation degree of bioactive substances. Herein, a lipidomics method for in situ monitoring of the dynamic oxidation characteristics in AKO was explored based on electric soldering iron ion source (ESII) coupling with rapid ev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2020-02, Vol.68 (5), p.1457-1467
Hauptverfasser: Song, Gongshuai, Wang, Haixing, Zhang, Mengna, Zhang, Yanping, Wang, Honghai, Yu, Xina, Wang, Jie, Shen, Qing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Antarctic krill oil (AKO) is susceptible to oxidation due to the high unsaturation degree of bioactive substances. Herein, a lipidomics method for in situ monitoring of the dynamic oxidation characteristics in AKO was explored based on electric soldering iron ion source (ESII) coupling with rapid evaporative ionization mass spectrometry (REIMS). The lipidomics profiles of AKO at different storage periods were successfully acquired. On the basis of principal component analysis and orthogonal partial least-squares analysis, the obtained REIMS data were employed to build a multivariate recognition model. The ions of m/z 707.50, 721.50, 833.49, and 837.54 contributed the most significant effect on the multivariate data model for the authentication of different AKO samples. Besides, the variation of viscosity, astaxanthin, and volatile compounds were also evaluated to corroborate the oxidation characteristics. The results indicated that the ESII-REIMS technology could be applied as an advanced rapid detection method to secure oil and fat quality during storage.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.9b07370