Alterations in Diffusion Measures of White Matter Integrity Associated with Healthy Aging
Abstract This study aimed to characterize age-related white matter changes by evaluating patterns of overlap between the linear association of age with fractional anisotropy (FA) with mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Specifically, we assessed patterns of ov...
Gespeichert in:
Veröffentlicht in: | The journals of gerontology. Series A, Biological sciences and medical sciences Biological sciences and medical sciences, 2021-06, Vol.76 (6), p.945-954 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
This study aimed to characterize age-related white matter changes by evaluating patterns of overlap between the linear association of age with fractional anisotropy (FA) with mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD). Specifically, we assessed patterns of overlap between diffusion measures of normal appearing white matter by covarying for white matter hyperintensity (WMH) load, as WMHs are thought to increase with age and impact diffusion measures. Seventy-nine healthy adults aged between 18 and 75 years took part in the study. Diffusion tensor imaging (DTI) data were based on 61 directions acquired with a b-value of 2,000. We found five main patterns of overlap: FA alone (15.95%); FA and RD (31.90%); FA and AD (12.99%); FA, RD, and AD (27.93%); and FA, RD, and MD (8.79%). We showed that cognitively healthy aging adults had low WMH load, which subsequently had minimal effect on diffusion measures. We discuss how patterns of overlap may reflect underlying biological changes observed with aging such as loss of myelination, axonal damage, as well as mild microstructural and chronic white matter impairments. This study contributes to understanding the underlying causes of degeneration in specific regions of the brain and highlights the importance of considering the impact of WMHs in aging studies of white matter. |
---|---|
ISSN: | 1079-5006 1758-535X |
DOI: | 10.1093/gerona/glz289 |