Quasisimultons in Thermal Atomic Vapors
The propagation of two-color laser fields through optically thick atomic ensembles is studied. We demonstrate how the interaction between these two fields spawns the formation of copropagating, two-color solitonlike pulses akin to the simultons found by Konopnicki and Eberly [Phys. Rev. A 24, 2567 (...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2019-12, Vol.123 (24), p.243604-243604, Article 243604 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The propagation of two-color laser fields through optically thick atomic ensembles is studied. We demonstrate how the interaction between these two fields spawns the formation of copropagating, two-color solitonlike pulses akin to the simultons found by Konopnicki and Eberly [Phys. Rev. A 24, 2567 (1981)PLRAAN0556-279110.1103/PhysRevA.24.2567]. For the particular case of thermal Rb atoms exposed to a combination of a weak cw laser field resonant on the D1 transition and a strong sub-ns laser pulse resonant on the D2 transition, simulton formation is initiated by an interplay between the 5s_{1/2}-5p_{1/2} and 5s_{1/2}-5p_{3/2} coherences. The interplay amplifies the D1 field at the arrival of the D2 pulse, producing a sech-squared pulse with a length of less than 10 μm. This amplification is demonstrated in a time-resolved measurement of the light transmitted through a thin thermal cell. We find good agreement between experiment and a model that includes the hyperfine structure of the relevant levels. With the addition of Rydberg dressing, quasisimultons may offer interesting prospects for strong photon-photon interactions in a robust environment. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.123.243604 |