Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride

Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched B or B. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-01, Vol.367 (6477), p.555-559
Hauptverfasser: Chen, Ke, Song, Bai, Ravichandran, Navaneetha K, Zheng, Qiye, Chen, Xi, Lee, Hwijong, Sun, Haoran, Li, Sheng, Udalamatta Gamage, Geethal Amila Gamage, Tian, Fei, Ding, Zhiwei, Song, Qichen, Rai, Akash, Wu, Hanlin, Koirala, Pawan, Schmidt, Aaron J, Watanabe, Kenji, Lv, Bing, Ren, Zhifeng, Shi, Li, Cahill, David G, Taniguchi, Takashi, Broido, David, Chen, Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Materials with high thermal conductivity (κ) are of technological importance and fundamental interest. We grew cubic boron nitride (cBN) crystals with controlled abundance of boron isotopes and measured κ greater than 1600 watts per meter-kelvin at room temperature in samples with enriched B or B. In comparison, we found that the isotope enhancement of κ is considerably lower for boron phosphide and boron arsenide as the identical isotopic mass disorder becomes increasingly invisible to phonons. The ultrahigh κ in conjunction with its wide bandgap (6.2 electron volts) makes cBN a promising material for microelectronics thermal management, high-power electronics, and optoelectronics applications.
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aaz6149