4-D Echo-Particle Image Velocimetry in a Left Ventricular Phantom
Left ventricular (LV) blood flow is an inherently complex time-varying 3-D phenomenon, where 2-D quantification often ignores the effect of out-of-plane motion. In this study, we describe high frame rate 4-D echocardiographic particle image velocimetry (echo-PIV) using a prototype matrix transesopha...
Gespeichert in:
Veröffentlicht in: | Ultrasound in medicine & biology 2020-03, Vol.46 (3), p.805-817 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Left ventricular (LV) blood flow is an inherently complex time-varying 3-D phenomenon, where 2-D quantification often ignores the effect of out-of-plane motion. In this study, we describe high frame rate 4-D echocardiographic particle image velocimetry (echo-PIV) using a prototype matrix transesophageal transducer and a dynamic LV phantom for testing the accuracy of echo-PIV in the presence of complex flow patterns. Optical time-resolved tomographic PIV (tomo-PIV) was used as a reference standard for comparison. Echo-PIV and tomo-PIV agreed on the general profile of the LV flow patterns, but echo-PIV smoothed out the smaller flow structures. Echo-PIV also underestimated the flow rates at greater imaging depths, where the PIV kernel size and transducer point spread function were large relative to the velocity gradients. We demonstrate that 4-D echo-PIV could be performed in just four heart cycles, which would require only a short breath-hold, providing promising results. However, methods for resolving high velocity gradients in regions of poor spatial resolution are required before clinical translation. |
---|---|
ISSN: | 0301-5629 1879-291X |
DOI: | 10.1016/j.ultrasmedbio.2019.11.020 |