In Situ Methods for Identifying Reactive Surface Intermediates during Hydrogenolysis Reactions: C–O Bond Cleavage on Nanoparticles of Nickel and Nickel Phosphides

Identifying individual reactive intermediates within the “zoo” of organometallic species that form on catalytic surfaces during reactions is a long-standing challenge in heterogeneous catalysis. Here, we identify distinct reactive intermediates, all of which exist at low coverages, that lead to dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2019-10, Vol.141 (42), p.16671-16684
Hauptverfasser: Witzke, Megan E, Almithn, Abdulrahman, Coonrod, Christian L, Triezenberg, Mark D, Hibbitts, David D, Flaherty, David W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Identifying individual reactive intermediates within the “zoo” of organometallic species that form on catalytic surfaces during reactions is a long-standing challenge in heterogeneous catalysis. Here, we identify distinct reactive intermediates, all of which exist at low coverages, that lead to distinguishable reaction pathways during the hydrogenolysis of 2-methyl­tetra­hydrofuran (MTHF) on Ni, Ni12P5, and Ni2P catalysts by combining advanced spectroscopic methods with quantum chemical calculations. Each of these reactive complexes cleaves specific C–O bonds, gives rise to unique products, and exhibits different apparent activation barriers for ring opening. The spectral features of the reactive intermediates are extracted by collecting in situ infrared spectra while sinusoidally modulating the H2 pressure during MTHF hydrogenolysis and applying phase-sensitive detection (PSD), which suppresses the features of inactive surface species. The combined spectra of all reactive species are deconvoluted using singular-value decomposition techniques that yield spectra and changes in surface coverage for each set of kinetically differentiable species. These deconvoluted spectra are consistent with predicted spectral features for the reactive surface intermediates implicated by detailed kinetic measurements and DFT calculations. Notably, these methods give direct evidence for several anticipated differences in the coordination and composition of reactive MTHF-derived species. The compositions of the most abundant reactive intermediate (MARI) on Ni, Ni12P5, and Ni2P nanoparticles during the C–O bond rupture of MTHF are identical; however, MARI changes orientation from Ni3(μ3-C5H10O) to Ni3(η5-C5H10O) (i.e., lies more parallel with the catalyst surface) with increasing phosphorus content. The shift in binding configuration with phosphorus content suggests that the decrease in steric hindrance to rupture the 3C–O bond is the fundamental cause of increased selectivity toward 3C–O bond rupture. Previous kinetic measurements and DFT calculations indicate that C–O bond rupture occurs on Ni ensembles on Ni, Ni12P5, and Ni2P catalysts; however, the addition of more electronegative phosphorus atoms that withdraw a small charge from Ni ensembles results in differences in the binding configuration, activation enthalpy, and selectivity. The results from this in situ spectroscopic methodology support previous proposals that the manipulation of the electronic structure of metal e
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.9b06112