Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy
Autophagy is a highly conserved catabolic process and participates in a variety of cellular biological activities. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway, as a critical regulator of autophagy, is involved in the initiation and promoti...
Gespeichert in:
Veröffentlicht in: | Applied microbiology and biotechnology 2020-01, Vol.104 (2), p.575-587 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Autophagy is a highly conserved catabolic process and participates in a variety of cellular biological activities. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway, as a critical regulator of autophagy, is involved in the initiation and promotion of a series of pathological disorders including various tumors. Autophagy also participates in regulating the balance between the tumor and the tumor microenvironment. Natural products have been considered a treasure of new drug discoveries and are of great value to medicine. Mounting evidence has suggested that numerous natural products are targeting PI3K/AKT/mTOR-mediated autophagy, thereby suppressing tumor growth. Furthermore, autophagy plays a “double-edged sword” role in different tumors. Targeting PI3K/AKT/mTOR-mediated autophagy is an important therapeutic strategy for a variety of tumors, and plays important roles in enhancing the chemosensitivity of tumor cells and avoiding drug resistance. Therefore, we summarized the roles of PI3K/AKT/mTOR-mediated autophagy in tumorigenesis, progression, and drug resistance of tumors, which may be utilized to design preferably therapeutic strategies for various tumors. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-019-10257-8 |