Yeast-Derived Formulations Are Differentially Fermented by the Canine and Feline Microbiome As Assessed in a Novel In Vitro Colonic Fermentation Model

The current study evaluated the effect of five yeast-derived formulations (T1–T5) on microbial metabolism and composition of the canine and feline gut microbiota using a novel in vitro colonic incubation approach. This novel in vitro model allowed for growth of the entire spectrum of dog- and cat-de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2020-11, Vol.68 (46), p.13102-13110
Hauptverfasser: Van den Abbeele, Pieter, Moens, Frédéric, Pignataro, Giulia, Schnurr, Judy, Ribecco, Cataldo, Gramenzi, Alessandro, Marzorati, Massimo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The current study evaluated the effect of five yeast-derived formulations (T1–T5) on microbial metabolism and composition of the canine and feline gut microbiota using a novel in vitro colonic incubation approach. This novel in vitro model allowed for growth of the entire spectrum of dog- and cat-derived bacteria from the inoculum, thus offering an excellent platform to evaluate effects of nutritional interventions on the gut microbiota. Further, yeast-derived ingredients differentially increased production of acetate, propionate, butyrate, ammonium, and branched short-chain fatty acids, with T5 and T1 consistently stimulating propionate and butyrate, respectively. 16S-targeted Illumina sequencing coupled with flow cytometry provided unprecedented high-resolution quantitative insights in canine and feline microbiota modulation by yeast-derived ingredients, revealing that effects on propionate production were related to Prevotellaceae, Tannerellaceae, Bacteroidaceae, and Veillonellaceae members, while effects on butyrate production were related to Erysipelotrichaceae, Lachnospiraceae, Ruminococcaceae, and Fusobacteriaceae. Overall, these findings strengthen the health-promoting potential of yeast-derived ingredients.
ISSN:0021-8561
1520-5118
DOI:10.1021/acs.jafc.9b05085