Metformin enhances the immunomodulatory potential of adipose-derived mesenchymal stem cells through STAT1 in an animal model of lupus
Abstract Objectives Mesenchymal stem cells (MSCs) are considered potential therapeutic agents for treating autoimmune disease because of their immunomodulatory capacities and anti-inflammatory effects. However, several studies have shown that there is no consistency in the effectiveness of the MSCs...
Gespeichert in:
Veröffentlicht in: | Rheumatology (Oxford, England) England), 2020-06, Vol.59 (6), p.1426-1438 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
Objectives
Mesenchymal stem cells (MSCs) are considered potential therapeutic agents for treating autoimmune disease because of their immunomodulatory capacities and anti-inflammatory effects. However, several studies have shown that there is no consistency in the effectiveness of the MSCs to treat autoimmune disease, including SLE. In this study, we investigated whether metformin could enhance the immunoregulatory function of MSCs, what mechanism is relevant, and whether metformin-treated MSCs could be effective in an animal lupus model.
Methods
Adipose-derived (Ad)-MSCs were cultured for 72 h in the presence of metformin. Immunoregulatory factors expression was analysed by real-time PCR and ELISA. MRL/lpr mice weekly injected intravenously with 1 × 106 Ad-MSCs or metformin-treated Ad-MSCs for 8 weeks. 16-week-old mice were sacrificed and proteinuria, anti-dsDNA IgG antibody, glomerulonephritis, immune complex, cellular subset were analysed in each group.
Results
Metformin enhanced the immunomodulatory functions of Ad-MSCs including IDO, IL-10 and TGF-β. Metformin upregulated the expression of p-AMPK, p-STAT1 and inhibited the expression of p-STAT3, p-mTOR in Ad-MSCs. STAT1 inhibition by siRNA strongly diminished IDO, IL-10, TGF-β in metformin-treated Ad-MSCs. As a result, metformin promoted the immunoregulatory effect of Ad-MSCs by enhancing STAT1 expression, which was dependent on the AMPK/mTOR pathway. Administration of metformin-treated Ad-MSCs resulted in significant disease activity improvement including inflammatory phenotype, glomerulonephritis, proteinuria and anti-dsDNA IgG antibody production in MRL/lpr mice. Moreover, metformin-treated Ad-MSCs inhibited CD4-CD8- T-cell expansion and Th17/Treg cell ratio.
Conclusion
Metformin optimized the immunoregulatory properties of Ad-MSCs and may be a novel therapeutic agent for the treatment of lupus. |
---|---|
ISSN: | 1462-0324 1462-0332 |
DOI: | 10.1093/rheumatology/kez631 |