Interleukin-17A induces renal fibrosis through the ERK and Smad signaling pathways
Interleukin (IL)-17A is upregulated in several renal diseases and plays a crucial role in renal inflammation. However, it remains unclear how IL-17A contributes to renal fibrosis. Our result demonstrated that IL-17A expression was upregulated in the obstructed kidney of unilateral ureter obstruction...
Gespeichert in:
Veröffentlicht in: | Biomedicine & pharmacotherapy 2020-03, Vol.123, p.109741-109741, Article 109741 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Interleukin (IL)-17A is upregulated in several renal diseases and plays a crucial role in renal inflammation. However, it remains unclear how IL-17A contributes to renal fibrosis. Our result demonstrated that IL-17A expression was upregulated in the obstructed kidney of unilateral ureter obstruction (UUO) mice when compared to the contralateral control kidney. Inhibition of IL-17A functions by the intravenous administration of an anti-IL-17A receptor antibody (100 μg) 2 h prior to UUO and on post-UUO day 1 and 3 significantly reduced fibronectin expression in the UUO kidney. The addition of IL-17A (25–100 μg) to human renal proximal tubular cells or renal fibroblasts caused an increase in fibronectin production and extracellular signal-regulated kinase (ERK)1/2 activation, which were reduced upon pretreatment with the ERK inhibitor U0126. The level of phosphorylated (p)-ERK1/2 was increased in the UUO kidney, but reduced by the administration of the anti-IL-17A receptor antibody, verifying the importance of the ERK pathway in vivo. TGF-β1 mRNA expression and protein were increased in the UUO kidney and in IL-17A–stimulated cultured cells. The administration of an anti-TGF-β1 neutralizing antibody or TGF-β1 receptor I inhibitor (SB431542) to cells abrogated the IL-17A–mediated increase of fibronectin production. IL-17A induced an increase in p-Smad2 and p-Smad3 expression at 7.5 min and 24 h and pretreatment with the anti-TGF-β1 neutralizing antibody, and SB431542 reduced the IL-17A–stimulated increase of p-Smad2. Knockdown of Smad2 or Smad3 expression inhibited the IL-17A–enhanced production of fibronectin. These results suggest an essential role for the TGF-β/Smad pathway in the IL-17A–mediated increase of fibronectin production. This study demonstrates that IL-17A contributes to the production of extracellular matrix, and targeting its associated signaling pathways could provide a therapeutic target for preventing renal fibrosis. |
---|---|
ISSN: | 0753-3322 1950-6007 |
DOI: | 10.1016/j.biopha.2019.109741 |