Metatranscriptomic analysis of adaptive response of anammox bacteria Candidatus ‘Kuenenia stuttgartiensis’ to Zn(II) exposure

Zn(II) is frequently detected in biological nitrogen removal systems treating high-strength wastewater (e.g., landfill leachate), yet the cellular defense strategies of anammox bacteria against Zn(II) cytotoxicity is largely unknown. To uncover survival mechanisms under Zn(II) stress, responses of e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemosphere (Oxford) 2020-05, Vol.246, p.125682-125682, Article 125682
Hauptverfasser: Ma, Xiao, Yan, Yuan, Wang, Weigang, Guo, Jianhua, Wang, Yayi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Zn(II) is frequently detected in biological nitrogen removal systems treating high-strength wastewater (e.g., landfill leachate), yet the cellular defense strategies of anammox bacteria against Zn(II) cytotoxicity is largely unknown. To uncover survival mechanisms under Zn(II) stress, responses of enriched anammox bacteria Candidatus ‘Kuenenia stuttgartiensis’ under exposure of various levels of Zn (II) were investigated through metatranscriptomic sequencing. Although increasing Zn(II) levels (50, 100 and 150 mg/L) resulted in decreasing anammox activities (86.1 ± 0.8%, 66.1 ± 1.4% and 43.9 ± 1.5% of the control, respectively), the viable cells in anammox sludge remained stable. Candidatus ‘K. stuttgartiensis’ possesses a complex network of regulatory systems to confer cells with the ability against Zn(II) toxicity, including functions related to substrate degradation, Zn(II) efflux, chelation, DNA repair, protein degradation, protein synthesis and signal transduction processes. Particularly, in order to maintain Zn(II) homeostasis, Candidatus ‘K. stuttgartiensis’ upregulated genes encoding RND efflux family (czcA, czcB, czcC, kustd1923 and kuste2279) for exporting Zn(II) actively. These heavy metal exporting genes could act as “sentinel genes” to detect the initial stage of Zn(II) inhibition on anammox bacteria, which might be beneficial to develop a diagnostic approach to predict the risk of operational failure when Zn(II) shock occurs. [Display omitted] •Metatranscriptomics was used to reveal Zn(II) resistance mechanism of Anammox cells.•Anammox activities could be recovered after Zn(II) shocks.•Anammox bacteria possess a complex regulatory network to cope with Zn(II) stress.•HMs-exporting genes could act as “sentinel genes” to detect HMs inhibition.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2019.125682