Chemically induced splay nematic phase with micron scale periodicity
Nematic liquid crystals lack positional order of their constituent molecules, which share an average orientational order only. Modulated nematic liquid crystal phases also lack positional order, but possess a periodic variation in this direction of average orientation. In the recently discovered spl...
Gespeichert in:
Veröffentlicht in: | Soft matter 2020-01, Vol.16 (2), p.324-329 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Nematic liquid crystals lack positional order of their constituent molecules, which share an average orientational order only. Modulated nematic liquid crystal phases also lack positional order, but possess a periodic variation in this direction of average orientation. In the recently discovered splay nematic (N
S
) phase the average orientational order is augmented with a periodic splay deformation of orientation perpendicular to the director. In this communication we report the first example of a splay nematic phase which is chemically induced by mixing two materials, neither of which exhibit the N
S
phase. The splay-nematic phase is identified based on its optical textures, X-ray scattering patterns, and small enthalpy of the associated phase transition. We measure the splay periodicity optically, finding it to be ∼9 μm. This unexpected generation of the splay-nematic phase through binary mixtures offers a new route to materials which exhibit this phase which complements ongoing studies into structure-property relationships and could accelerate the development of technologies utilising this remarkable polar nematic variant.
We find that the splay nematic phase can be chemically induced in binary mixtures of two materials, neither of which exhibits the splay nematic phase in their neat state. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/c9sm02143d |