Hybrid nano-textured nanogenerator and self-powered sensor for on-skin triggered biomechanical motions
Researchers have made a lot of effort for the lightweight and high flexibility of wearable electronic devices, which also requires the associated energy harvesting equipment to have ultra-thin thickness and high stretchability. Therefore, a piezoelectric-triboelectric hybrid self-powered sensor (PTH...
Gespeichert in:
Veröffentlicht in: | Nanotechnology 2020-04, Vol.31 (15), p.155502-155502 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Researchers have made a lot of effort for the lightweight and high flexibility of wearable electronic devices, which also requires the associated energy harvesting equipment to have ultra-thin thickness and high stretchability. Therefore, a piezoelectric-triboelectric hybrid self-powered sensor (PTHS) has been proposed which can be used as the second layer of the human body. This elastic PTHS can even work on a person's fingers without disturbing the body's movements. The open circuit voltage and short circuit current of devices with a projected area of 30 mm × 25 mm can reach 1.2 V and 30 nA, respectively. Two piezoelectrically-triboelectrically sensors with machine learning optimized identification strategies were experimentally proven as the potential applications of the PTHS. The PTHS's ultra-thin thickness, high stretchability and superior geometry control features are promising in electronic skin, artificial muscle and soft robotics. The novelty of this work is that a smart mask integrated with PTHS can generate a signal of the hybrid sensor for the biomechanical motion classifier. After suitable training, an overall accuracy of 87.9% using long short-term memory can be achieved. |
---|---|
ISSN: | 0957-4484 1361-6528 |
DOI: | 10.1088/1361-6528/ab6677 |