The matrix of SDS integrated with linear hydrophilic polymer for resolution of high- and low-molecular weight hyaluronic acids in MEKC

Hyaluronic acid (HA), a multi-functional material, has a high dispersion in molecular weight, and the functions of HA are determined through the size. Nevertheless, hyaluronic acid mixtures are not easily separated due to their polydispersity. In this study, a capillary electrophoresis strategy was...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Yàowu shi͡p︡in fenxi 2020-01, Vol.28 (1), p.159-166
Hauptverfasser: Lin, Kung-Hung, Kou, Hwang-Shang, Lin, Yi-Hui, Wang, Chun-Chi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hyaluronic acid (HA), a multi-functional material, has a high dispersion in molecular weight, and the functions of HA are determined through the size. Nevertheless, hyaluronic acid mixtures are not easily separated due to their polydispersity. In this study, a capillary electrophoresis strategy was developed for resolution of different molecular-weight HA without enzymatic digestion. Here, hyaluronic acid mixtures with low molecular weight (380 kD; LHA) and high molecular weight (2180 kD; HHA) were successfully resolved by the SDS integrated with low molecular-weight polymer in capillary electrophoresis. By optimizing experimental conditions, the separation of LHA and HHA was completed within 14 min. The optimal conditions were as follows: the running buffer was 25 mM borate buffer (pH 9.75) containing 30 mM SDS and 10% polyethylene glycol (MW: 8000); applied voltage was 20 kV (detector at cathode side) and separation temperature was set at 25 °C. The data of method validation showed that calibration plots were linear (r ≥ 0.9977) over a range of 10–50 μg/mL for LHA, and 40–200 μg/mL for HHA. In the evaluation of precision and accuracy for this method, the RSD and RE values were all less than 4.2%. This fascinating technique was successfully applied to the quality control of cosmetic and pharmaceutical containing different ratios of LHA and HHA, and it was feasible for serving as a tool to quantitatively analyze different sizes of HA for clinical survey. [Display omitted] •This is the first CE method for simultaneous resolution of high and low molecular weight hyaluronic acid (HA).•The matrix of SDS micelles and PEG sieving matrix was used for successful resolution of different molecular-weight HA.•This quantitative analysis of different molecular-weight HA was feasible for serving as a tool for clinical survey.
ISSN:1021-9498
2224-6614
DOI:10.1016/j.jfda.2019.10.005