A seated human model for predicting the coupled human-seat transmissibility exposed to fore-aft whole-body vibration
Occupant discomfort, induced by vibration transmitted through a vehicle seat, can be evaluated by measuring vibration on the contact interface between the occupant and seat. In the previous study (Ittianuwat et al., 2016), measuring five contact points of the back-backrest, including centre point (I...
Gespeichert in:
Veröffentlicht in: | Applied ergonomics 2020-04, Vol.84, p.102929-102929, Article 102929 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Occupant discomfort, induced by vibration transmitted through a vehicle seat, can be evaluated by measuring vibration on the contact interface between the occupant and seat. In the previous study (Ittianuwat et al., 2016), measuring five contact points of the back-backrest, including centre point (ISO 2631-1), was considered as an important factor for assessing occupant comfort in frequencies where seat structure resonances occur. To enhance occupant vibration comfort in the early seat design stage, predicting the dynamic response of the coupled human-seat system on various contact locations is necessary. In this study, a low order seated human body Finite Element (FE) model was developed for predicting vibration transmissibility of the human-seat system in frequencies up to 30 Hz. Throughout the optimization process, the parameters of the model were obtained by comparing measured transmissibilities of the occupied vehicle seat system. The human-seat system vibration modes were also compared and verified with measured data by calculating MAC (Modal Assurance Criterion). The results showed that two human body vibration modes coupled with foam were observed below 10 Hz, and two coupled human and seat structure fore-aft modes were observed at around 20.1 Hz and 21.9 Hz. Fore-aft transmissibility of the model at various locations of contact provided reasonable correlation with the measured data. The developed low order human model enables the prediction of the fore-aft transmissibility on various back-backrest contact locations up to 30 Hz. This showed the capability of improving occupant's vibration comfort by predicting transmissibilities of the human-seat system in the early stage of developing a new vehicle seat.
•The vibration mode shapes of the coupled human-seat system have been identified.•A human body model is developed to predict the fore-aft vibration transmissibilities at different backrest contact locations.•The developed human model can be used to characterize the vehicle seat vibration discomfort. |
---|---|
ISSN: | 0003-6870 1872-9126 |
DOI: | 10.1016/j.apergo.2019.102929 |