Posterior Cruciate Ligament

Improved understanding of the anatomy and biomechanics of the posterior cruciate ligament (PCL) has led to the evolution and improvement of anatomic-based reconstructions. The PCL is composed of the larger anterolateral bundle (ALB) and the smaller posteromedial bundle (PMB). On the femoral side, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arthroscopy 2020-02, Vol.36 (2), p.333-335
Hauptverfasser: Chahla, Jorge, Williams, Brady T., LaPrade, Robert F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improved understanding of the anatomy and biomechanics of the posterior cruciate ligament (PCL) has led to the evolution and improvement of anatomic-based reconstructions. The PCL is composed of the larger anterolateral bundle (ALB) and the smaller posteromedial bundle (PMB). On the femoral side, the ALB spans from the trochlear point to the medial arch point on the roof of the notch, while the PMB occupies the medial wall from the medial arch point to the most posterior aspect of the articular cartilage. Because of these broad and distinct attachments, the bundles have a load-sharing, synergistic and codominant relationship. Both restrict posterior translation; however, the ALB has a proportionally larger role in restricting translation throughout flexion, whereas the PMB has a role comparable to that of the ALB in full extension. In addition, the PMB resists internal rotational at greater flexion angles (> 90°). Consequently, it is difficult to restore native kinematics with a single graft. Biomechanical analysis of single- versus double-bundle PCL reconstructions (SB PCLR vs DB PCLR) demonstrates improved restoration of native kinematics with a DB PCLR, including resistance to posterior translation throughout flexion (15°-120°) and internal rotation in deeper flexion (90°-120°). Similarly, clinical research demonstrates excellent outcomes following DB PCLR, including functional outcomes comparable to those of anterior cruciate ligament reconstructions, with no significant differences between isolated and multiligament PCL injuries. Compared to SB PCLR, systematic review has demonstrated the superiority of DB PCLR based on objective postoperative stress radiography and International Knee Documentation Committee scores in randomized trials. In addition to reconstruction techniques, recent research has identified other factors that impact kinematics and PCL forces, including decreased tibial slope, which leads to increased graft stresses, and incidence of native PCL injuries. As the understanding of these other contributing factors evolves, so will surgical and treatment algorithms that will further improve patients’ outcomes.
ISSN:0749-8063
1526-3231
DOI:10.1016/j.arthro.2019.12.013