Photonic high-fidelity storage and Doppler frequency shift of broadband RF pulse signals

A microwave photonic system which can simultaneously realize the functions of rapidly tunable Doppler frequency shift (DFS) and high fidelity storage of broadband RF signals is proposed and verified. Single-sideband carrier-suppression modulation combined with dual-AOM frequency shifting ensures lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2019-11, Vol.27 (23), p.34359-34369
Hauptverfasser: Ding, Zhidan, Yang, Fei, Zhao, Jiejun, Wu, Rui, Cai, Haiwen, Wang, Mingjun, Weng, Yongxiang, Zhao, Zixin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A microwave photonic system which can simultaneously realize the functions of rapidly tunable Doppler frequency shift (DFS) and high fidelity storage of broadband RF signals is proposed and verified. Single-sideband carrier-suppression modulation combined with dual-AOM frequency shifting ensures large-range and fast-responding DFS. And time-gated semiconductor amplifier (SOA) based fiber delay loop can realize high-fidelity RF pulse storage with high extinction ratio switching and amplification characteristics of time-gated SOA. A spurious rejection ratio greater than 40 dB, tuning range of DFS greater than ± 3 MHz, response speed of DFS less than 30 ns, and high fidelity storage of 4 GHz-12 GHz RF signals with greater than 381 circulations (corresponding 80 us delay time) are realized by the proposed structure. The maximum signal-to-noise ratio (SNR) is 13.6 dB within 381 circulations. Based on the experimental data, the simulation results show that the delay time also could be extended to 10 times more.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.27.034359