Electrostatically Governed Debye Screening Length at the Solution-Solid Interface for Biosensing Applications

Biosensors based on field-effect devices (bioFETs) offer numerous advantages over current technologies and therefore have attracted immense research over the decades. However, short Debye screening length in highly ionic physiological solutions remains the main obstacle for bioFET realization. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS sensors 2020-01, Vol.5 (1), p.154-161
Hauptverfasser: Bhattacharyya, Ie Mei, Shalev, Gil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Biosensors based on field-effect devices (bioFETs) offer numerous advantages over current technologies and therefore have attracted immense research over the decades. However, short Debye screening length in highly ionic physiological solutions remains the main obstacle for bioFET realization. This challenge becomes considerably more acute at the electrolyte–oxide interface of the sensing area due to high ion concentration induced by the charged amphoteric sites, which prohibits any attempt to employ the field-effect mechanism to “sense” any charged biomolecules. In this work, we present an electrostatic approach by which the double layer (DL) excess ion concentration is removed, thus forcing the DL ion concentration to match the bulk concentration, which subsequently forces bulk screening length at the DL, thereby “exposing” target biomolecules to the underlying bioFET. To this end, we employ local tunable surface electric fields, introduced to the DL using surface passivated-metal electrodes. We examine numerically and analytically the effect of these electric fields on the DL ion distribution. We also numerically demonstrate the feasibility of the proposed approach for a fully depleted silicon-on-insulator based bioFET and show how the threshold voltage shift induced by the presence of target molecules increases by almost two orders of magnitude upon the removal of the surface excess ion population.
ISSN:2379-3694
2379-3694
DOI:10.1021/acssensors.9b01939