Identification of heavy metal by testing microalgae using confocal Raman microspectroscopy technology
Five copper concentrations (0, 0.5, 1, 2, and 4 mg/l) were used to stress C. pyrenoidosa continuously for five days. The biomass, chlorophyll, and carotenoids of microalgae were measured, and Raman mapping spectral data and Raman single-point spectral data of microalgae were acquired. Principal comp...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2019-11, Vol.58 (31), p.8396-8403 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Five copper concentrations (0, 0.5, 1, 2, and 4 mg/l) were used to stress C. pyrenoidosa continuously for five days. The biomass, chlorophyll, and carotenoids of microalgae were measured, and Raman mapping spectral data and Raman single-point spectral data of microalgae were acquired. Principal component-linear discriminant analysis, back propagation-artificial neural network (BP-ANN), and sensitive wavelengths-linear discriminant analysis were used to build models to identify different copper concentrations using the spectral data after pretreatment. The results showed that the BP-ANN model was optimal to identify copper concentrations with prediction accuracy of 92% on day 4. |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.58.008396 |