Dynamical disorder and resonance energy transfer: a novel quantum-classical approach
Resonance energy transfer (RET), at the heart of photosynthesis, supports life on earth, but also guarantees the operation of several technological devices, like organic light-emitting diodes and solar cells. Medium properties and dynamics largely affect RET efficiency, but reliable models addressin...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2020-01, Vol.22 (3), p.161-168 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Resonance energy transfer (RET), at the heart of photosynthesis, supports life on earth, but also guarantees the operation of several technological devices, like organic light-emitting diodes and solar cells. Medium properties and dynamics largely affect RET efficiency, but reliable models addressing how molecular electron-vibration motion and solvent dynamics jointly affect RET are still missing. Here we propose a novel quantum-classical approach to describe RET in a non-adiabatic molecular system embedded in a dynamic polar environment. The approach, validated against optical properties of a dye in solution, is then applied to a RET-pair, demonstrating that dynamic disorder, as induced by a liquid polar solvent, boosts RET efficiency.
A novel quantum-classical approach demonstrates that dynamic disorder, as induced by a liquid polar solvent, boosts RET efficiency. |
---|---|
ISSN: | 1463-9076 1463-9084 |
DOI: | 10.1039/c9cp06038c |