Long‐read sequencing and de novo assembly of the Luffa cylindrica (L.) Roem. genome
Sponge gourd (Luffa cylindrica (L.) Roem.) or luffa is a diploid herbaceous plant with 26 chromosomes (2n = 26) and belongs to the family Cucurbitaceae. To address the limited knowledge of the genome of Luffa species, the chromosome‐level genome of L. cylindrica was assembled and analysed using PacB...
Gespeichert in:
Veröffentlicht in: | Molecular ecology resources 2020-03, Vol.20 (2), p.511-519 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Sponge gourd (Luffa cylindrica (L.) Roem.) or luffa is a diploid herbaceous plant with 26 chromosomes (2n = 26) and belongs to the family Cucurbitaceae. To address the limited knowledge of the genome of Luffa species, the chromosome‐level genome of L. cylindrica was assembled and analysed using PacBio long reads and Hi‐C data. We combined Hi‐C data with a draft genome assembly to generate chromosome‐length scaffolds. Thirteen scaffolds corresponding to the 13 chromosomes were assembled from 1,156 contigs to a final size of 669 Mb with a contig N50 size of 5 Mb and a scaffold N50 size of 53 Mb. After removing redundant sequences, 416.31 Mb (62.18% of the genome) of repeat sequences was detected. Subsequently, 31,661 protein‐coding genes with an average of 5.69 exons per gene were identified in the L. cylindrica genome using de novo methods, transcriptome data and homologue‐based approaches. In addition, 27,552 protein‐coding genes (87.02%) were annotated in five databases. According to the phylogenetic analysis, L. cylindrica is closely related to Cucurbita and Cucumis species and diverged from their common ancestor ~28.6–67.1 million years ago. Genome collinearity analysis was performed in Cucurbita moschata, Cucumis sativus and L. cylindrica, and it demonstrated a high degree of conserved gene order in these three species. The completeness of the genome will provide high‐quality genomic knowledge on breeding and reveal genetic variation in L. cylindrica.
See also the perspective by Annarita Marrano, Alice E. Palmer and Brook T. Moyers |
---|---|
ISSN: | 1755-098X 1755-0998 |
DOI: | 10.1111/1755-0998.13129 |