Single‐Atom Iron Boosts Electrochemiluminescence

The traditional luminol–H2O2 electrochemiluminescence (ECL) sensing platform suffers from self‐decomposition of H2O2 at room temperature, hampering its application for quantitative analysis. In this work, for the first time we employ iron single‐atom catalysts (Fe‐N‐C SACs) as an advanced co‐reactan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2020-02, Vol.59 (9), p.3534-3538
Hauptverfasser: Gu, Wenling, Wang, Hengjia, Jiao, Lei, Wu, Yu, Chen, Yuxin, Hu, Liuyong, Gong, Jingming, Du, Dan, Zhu, Chengzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The traditional luminol–H2O2 electrochemiluminescence (ECL) sensing platform suffers from self‐decomposition of H2O2 at room temperature, hampering its application for quantitative analysis. In this work, for the first time we employ iron single‐atom catalysts (Fe‐N‐C SACs) as an advanced co‐reactant accelerator to directly reduce the dissolved oxygen (O2) to reactive oxygen species (ROS). Owing to the unique electronic structure and catalytic activity of Fe‐N‐C SACs, large amounts of ROS are efficiently produced, which then react with the luminol anion radical and significantly amplify the luminol ECL emission. Under the optimum conditions, a Fe‐N‐C SACs–luminol ECL sensor for antioxidant capacity measurement was developed with a good linear range from 0.8 μm to 1.0 mm of Trolox. Boosting luminescence: The traditional luminol–H2O2 electrochemiluminescence (ECL) sensing platform suffers from self‐decomposition of H2O2 at room temperature, hampering its application for quantitative analysis. Single‐atom iron boosts luminol ECL by in situ generating reactive oxygen species, achieving sensitive detection of antioxidants.
ISSN:1433-7851
1521-3773
DOI:10.1002/anie.201914643