Investigation of subsurface damage density and morphology impact on the laser-induced damage threshold of fused silica
The laser-induced damage threshold (LIDT) of fused silica is affected by laser field intensity modulation and laser energy absorption. In this paper, the subsurface damage (SSD) density and morphology are detected by the small-angle taper polishing method. The modulation effect of SSD morphology on...
Gespeichert in:
Veröffentlicht in: | Applied optics (2004) 2019-12, Vol.58 (36), p.9839-9845 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The laser-induced damage threshold (LIDT) of fused silica is affected by laser field intensity modulation and laser energy absorption. In this paper, the subsurface damage (SSD) density and morphology are detected by the small-angle taper polishing method. The modulation effect of SSD morphology on the incident laser/electric field is analyzed by the finite difference time domain (FDTD) simulation. Finally, the LIDT of the taper polished surface is tested to analyze the relationship among LIDT, SSD density, and SSD morphology, and the results show a high correlation. A reliable regression model is obtained based on the results, which shows that LIDT is inversely proportional to SSD density and the light intensity enhancement factor (LIEF). |
---|---|
ISSN: | 1559-128X 2155-3165 1539-4522 |
DOI: | 10.1364/AO.58.009839 |