Witnessing Quantum Resource Conversion within Deterministic Quantum Computation Using One Pure Superconducting Qubit

Deterministic quantum computation with one qubit (DQC1) is iconic in highlighting that exponential quantum speedup may be achieved with negligible entanglement. Its discovery catalyzed a heated study of general quantum resources, and various conjectures regarding their role in DQC1's performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-11, Vol.123 (22), p.220501-220501, Article 220501
Hauptverfasser: Wang, W, Han, J, Yadin, B, Ma, Y, Ma, J, Cai, W, Xu, Y, Hu, L, Wang, H, Song, Y P, Gu, Mile, Sun, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deterministic quantum computation with one qubit (DQC1) is iconic in highlighting that exponential quantum speedup may be achieved with negligible entanglement. Its discovery catalyzed a heated study of general quantum resources, and various conjectures regarding their role in DQC1's performance advantage. Coherence and discord are prominent candidates, respectively, characterizing nonclassicality within localized and correlated systems. Here we realize DQC1 within a superconducting system, engineered such that the dynamics of coherence and discord can be tracked throughout its execution. We experimentally confirm that DQC1 acts as a resource converter, consuming coherence to generate discord during its operation. Our results highlight superconducting circuits as a promising platform for both realizing DQC1 and related algorithms, and experimentally characterizing resource dynamics within quantum protocols.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.123.220501