Effect of graphene oxide exposure on intestinal Wnt signaling in nematode Caenorhabditis elegans
Exposure to engineered nanomaterials (ENMs), such as graphene oxide (GO), can potentially induce the response of various molecular signaling pathways, which can mediate the protective function or the toxicity induction. Wnt signaling pathway is conserved evolutionarily in organisms. Using Caenorhabd...
Gespeichert in:
Veröffentlicht in: | Journal of environmental sciences (China) 2020-02, Vol.88, p.200-208 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Exposure to engineered nanomaterials (ENMs), such as graphene oxide (GO), can potentially induce the response of various molecular signaling pathways, which can mediate the protective function or the toxicity induction. Wnt signaling pathway is conserved evolutionarily in organisms. Using Caenorhabditis elegans as an in vivo assay model, we investigated the effect of GO exposure on intestinal Wnt signaling. In the intestine, GO exposure dysregulated Frizzled receptor MOM-5, Disheveled protein DSH-2, GSK-3 (a component of APC complex), and two β-catenin proteins (BAR-1 and HMP-2), which mediated the induction of GO toxicity. In GO exposed nematodes, a Hox protein EGL-5 acted as a downstream target of BAR-1, and fatty acid transport ACS-22 acted as a downstream target of HMP-2. Functional analysis on HMP-2 and ACS-22 suggested that the dysregulation of these two proteins provides an important basis for the observed deficit in functional state of intestinal barrier. Our results imply the association of dysregulation in physiological and functional states of intestinal barrier with toxicity induction of GO in organisms.
[Display omitted] |
---|---|
ISSN: | 1001-0742 1878-7320 |
DOI: | 10.1016/j.jes.2019.09.002 |