Multifunctional, Room-Temperature Processable, Heterogeneous Organic Passivation Layer for Oxide Semiconductor Thin-Film Transistors
In recent decades, oxide thin-film transistors (TFTs) have attracted a great deal of attention as a promising technology in terms of next-generation electronics due to their outstanding electrical performance. However, achieving robust electrical characteristics under various environments is a cruci...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-01, Vol.12 (2), p.2615-2624 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent decades, oxide thin-film transistors (TFTs) have attracted a great deal of attention as a promising technology in terms of next-generation electronics due to their outstanding electrical performance. However, achieving robust electrical characteristics under various environments is a crucial challenge for successful realization of oxide-based electronic applications. To resolve the limitation, we propose a highly flexible and reliable heterogeneous organic passivation layer composed of stacked parylene-C and diketopyrrolopyrrole-polymer films for improving stability of oxide TFTs under various environments and mechanical stress. The presented multifunctional heterogeneous organic (MHO) passivation leads to high-performance oxide TFTs by: (1) improving their electrical characteristics, (2) protecting them from external reactive molecules, and (3) blocking light exposure to the oxide layer. As a result, oxide TFTs with MHO passivation exhibit outstanding stability in ambient air as well as under light illumination: the threshold voltage shift of the device is almost 0 V under severe negative bias illumination stress condition (white light of 5700 lx, gate voltage of −20 V, and drain voltage of 10.1 V for 20 000 s). Furthermore, since the MHO passivation layer exhibits high mechanical stability at a bending radius of ≤5 mm and can be deposited at room temperature, this technique is expected to be useful in the fabrication of flexible/wearable devices. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b16898 |