Highly Efficient Solar Steam Generation by Glassy Carbon Foam Coated with Two-Dimensional Metal Chalcogenides

Steam generation by eco-friendly solar energy has immense potential in terms of low-cost power generation, desalination, sanitization, and wastewater treatment. Herein, highly efficient steam generation in a bilayer solar steam generator (BSSG) is demonstrated, which is comprised of a large-area SnS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-01, Vol.12 (2), p.2490-2496
Hauptverfasser: Tahir, Zeeshan, Kim, Sungdo, Ullah, Farman, Lee, Sunghan, Lee, Je-ho, Park, No-Won, Seong, Maeng-Je, Lee, Sang-Kwon, Ju, Tae-Seong, Park, Sungkyun, Bae, Jong-Seong, Jang, Joon Ik, Kim, Yong Soo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Steam generation by eco-friendly solar energy has immense potential in terms of low-cost power generation, desalination, sanitization, and wastewater treatment. Herein, highly efficient steam generation in a bilayer solar steam generator (BSSG) is demonstrated, which is comprised of a large-area SnSe–SnSe2 layer deposited on a glassy carbon foam (CF). Both CF and SnSe–SnSe2 possess high photothermal conversion capabilities and low thermal conductivities. The combined bilayer system cumulatively converts input solar light into heat through phonon-assisted transitions in the indirect band gap SnSe–SnSe2 layer, together with trapping of sunlight via multiple scattering due to the porous morphology of the CF. This synergistic effect leads to efficient broadband solar absorption. Moreover, the low out-of-plane thermal conductivities of SnSe–SnSe2 and CF confine the generated heat at the evaporation surface, resulting in a significant reduction of heat losses. Additionally, the hydrophilic nature of the acid-treated CF offers effective water transport via capillary action, required for efficient solar steam generation in a floating form. A high evaporation rate (1.28 kg m–2 h–1) and efficiency (84.1%) are acquired under 1 sun irradiation. The BSSG system shows high recyclability, stability, and durability under repeated steam-generation cycles, which renders its practical device applications possible.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b18589