A method for the integration in time of certain partial differential equations

A method for the numerical solution of ordinary differential equations is analyzed that is explicit and yet can conserve the quadratic quantities conserved by the equations. The method can be a useful alternative to the usual leapfrog technique, in that it does not suffer from the occurrence of blow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 1983-01, Vol.52 (2), p.273-289
Hauptverfasser: Sanz-Serna, J.M, Manoranjan, V.S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A method for the numerical solution of ordinary differential equations is analyzed that is explicit and yet can conserve the quadratic quantities conserved by the equations. The method can be a useful alternative to the usual leapfrog technique, in that it does not suffer from the occurrence of blowup phenomena. Numerical examples concerning the Korteweg-de Vries equation and the nonlinear Schrödinger equation are given.
ISSN:0021-9991
1090-2716
DOI:10.1016/0021-9991(83)90031-1