A method for the integration in time of certain partial differential equations
A method for the numerical solution of ordinary differential equations is analyzed that is explicit and yet can conserve the quadratic quantities conserved by the equations. The method can be a useful alternative to the usual leapfrog technique, in that it does not suffer from the occurrence of blow...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 1983-01, Vol.52 (2), p.273-289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method for the numerical solution of ordinary differential equations is analyzed that is explicit and yet can conserve the quadratic quantities conserved by the equations. The method can be a useful alternative to the usual leapfrog technique, in that it does not suffer from the occurrence of blowup phenomena. Numerical examples concerning the Korteweg-de Vries equation and the nonlinear Schrödinger equation are given. |
---|---|
ISSN: | 0021-9991 1090-2716 |
DOI: | 10.1016/0021-9991(83)90031-1 |