Synergetic Effect of Porous Elastomer and Percolation of Carbon Nanotube Filler toward High Performance Capacitive Pressure Sensors

Wearable pressure sensors have been attracting great attention for a variety of practical applications, including electronic skin, smart textiles, and healthcare devices. However, it is still challenging to realize wearable pressure sensors with sufficient sensitivity and low hysteresis under small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2020-01, Vol.12 (1), p.1698-1706
Hauptverfasser: Choi, Jungrak, Kwon, Donguk, Kim, Kyuyoung, Park, Jaeho, Orbe, Dionisio Del, Gu, Jimin, Ahn, Junseong, Cho, Incheol, Jeong, Yongrok, Oh, Yongsuk, Park, Inkyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Wearable pressure sensors have been attracting great attention for a variety of practical applications, including electronic skin, smart textiles, and healthcare devices. However, it is still challenging to realize wearable pressure sensors with sufficient sensitivity and low hysteresis under small mechanical stimuli. Herein, we introduce simple, cost-effective, and sensitive capacitive pressure sensor based on porous Ecoflex-multiwalled carbon nanotube composite (PEMC) structures, which leads to enhancing the sensitivity (6.42 and 1.72 kPa–1 in a range of 0–2 and 2–10 kPa, respectively) due to a synergetic effect of the porous elastomer and percolation of carbon nanotube fillers. The PEMC structure shows excellent mechanical deformability and compliance for an effective integration with practical wearable devices. Also, the PEMC-based pressure sensor shows not only the long-term stability, low-hysteresis, and fast response under dynamic loading but also the high robustness against temperature and humidity changes. Finally, we demonstrate a prosthetic robot finger integrated with a PEMC-based pressure sensor and an actuator as well as a healthcare wristband capable of continuously monitoring blood pressure and heart rate.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.9b20097