Spin–Phonon Interfaces in Coupled Nanomechanical Cantilevers
Coupled micro- and nanomechanical oscillators are of fundamental and technical interest for emerging quantum technologies. Upon interfacing with long-lived solid-state spins, the coherent manipulation of the quantum hybrid system becomes possible even at ambient conditions. Although the ability of t...
Gespeichert in:
Veröffentlicht in: | Nano letters 2020-01, Vol.20 (1), p.463-469 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coupled micro- and nanomechanical oscillators are of fundamental and technical interest for emerging quantum technologies. Upon interfacing with long-lived solid-state spins, the coherent manipulation of the quantum hybrid system becomes possible even at ambient conditions. Although the ability of these systems to act as a quantum bus inducing long-range spin–spin interactions has been known, the possibility to coherently couple electron/nuclear spins to the common modes of multiple oscillators and map their mechanical motion to spin-polarization has not been experimentally demonstrated. We here report experiments on interfacing spins to the common modes of a coupled cantilever system and show their correlation by translating ultralow forces induced by radiation from one oscillator to a distant spin. Further, we analyze the coherent spin–spin coupling induced by the common modes and estimate the entanglement generation among distant spins. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/acs.nanolett.9b04198 |