Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position
Purpose Thermoneutral head-out water immersion (WI) and 6° head-down tilt (HDT) have been considered as suitable models to increase central blood volume and simulate autonomic cardiovascular adaptations to microgravity, swimming or scuba diving. However, any differences in autonomic cardiovascular a...
Gespeichert in:
Veröffentlicht in: | European journal of applied physiology 2020-02, Vol.120 (2), p.337-347 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Purpose
Thermoneutral head-out water immersion (WI) and 6° head-down tilt (HDT) have been considered as suitable models to increase central blood volume and simulate autonomic cardiovascular adaptations to microgravity, swimming or scuba diving. However, any differences in autonomic cardiovascular adaptations are still unclear. In this study, we hypothesized that WI induces a higher activation of arterial baroreceptors and the parasympathetic system.
Methods
Ten healthy men underwent 30 min of WI, HDT, and a supine position (SP). RR intervals (RRI) and blood pressure (BP) were continuously monitored. High frequency power (HF), low frequency power (LF) and LF/HF ratio were calculated to study sympathetic and parasympathetic activities, and a spontaneous baroreflex method was used to study arterial baroreflex sensitivity (aBRS). Lung transfer of nitric oxide and carbon monoxide (TLNO/TLCO), vital capacity and alveolar volume (Vc/VA) were measured to study central blood redistribution.
Results
We observed (1) a similar increase in RRI and decrease in BP; (2) a similar increase in HF power during all experimental conditions, whereas LF increased after; (3) a similar rise in aBRS; (4) a similar increase in Vc/VA and decrease in TLNO/TLCO in all experimental conditions.
Conclusions
These results showed a cardiac parasympathetic dominance to the same extent, underpinned by a similar arterial baroreflex activation during WI and HDT as well as control SP. Future studies may address their association with cold or hyperoxia to assess their ability to replicate autonomic cardiovascular adaptations to microgravity, swimming or scuba diving. |
---|---|
ISSN: | 1439-6319 1439-6327 |
DOI: | 10.1007/s00421-019-04278-4 |