Autonomic cardiovascular adaptations to acute head-out water immersion, head-down tilt and supine position

Purpose Thermoneutral head-out water immersion (WI) and 6° head-down tilt (HDT) have been considered as suitable models to increase central blood volume and simulate autonomic cardiovascular adaptations to microgravity, swimming or scuba diving. However, any differences in autonomic cardiovascular a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of applied physiology 2020-02, Vol.120 (2), p.337-347
Hauptverfasser: Chouchou, Florian, Pichot, Vincent, Costes, Frédéric, Guillot, Mailys, Barthélémy, Jean-Claude, Bertoletti, Laurent, Roche, Frédéric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose Thermoneutral head-out water immersion (WI) and 6° head-down tilt (HDT) have been considered as suitable models to increase central blood volume and simulate autonomic cardiovascular adaptations to microgravity, swimming or scuba diving. However, any differences in autonomic cardiovascular adaptations are still unclear. In this study, we hypothesized that WI induces a higher activation of arterial baroreceptors and the parasympathetic system. Methods Ten healthy men underwent 30 min of WI, HDT, and a supine position (SP). RR intervals (RRI) and blood pressure (BP) were continuously monitored. High frequency power (HF), low frequency power (LF) and LF/HF ratio were calculated to study sympathetic and parasympathetic activities, and a spontaneous baroreflex method was used to study arterial baroreflex sensitivity (aBRS). Lung transfer of nitric oxide and carbon monoxide (TLNO/TLCO), vital capacity and alveolar volume (Vc/VA) were measured to study central blood redistribution. Results We observed (1) a similar increase in RRI and decrease in BP; (2) a similar increase in HF power during all experimental conditions, whereas LF increased after; (3) a similar rise in aBRS; (4) a similar increase in Vc/VA and decrease in TLNO/TLCO in all experimental conditions. Conclusions These results showed a cardiac parasympathetic dominance to the same extent, underpinned by a similar arterial baroreflex activation during WI and HDT as well as control SP. Future studies may address their association with cold or hyperoxia to assess their ability to replicate autonomic cardiovascular adaptations to microgravity, swimming or scuba diving.
ISSN:1439-6319
1439-6327
DOI:10.1007/s00421-019-04278-4