Cost-Effectiveness Analysis for Influenza Vaccination Coverage and Timing in Tropical and Subtropical Climate Settings: A Modeling Study

The lack of seasonality in influenza epidemics in the tropics makes the application of well-established temperate zone national vaccination plans challenging. We developed an individual-based simulation model to study optimal vaccination scheduling and assess cost-effectiveness of these vaccination...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Value in health 2019-12, Vol.22 (12), p.1345-1354
Hauptverfasser: Yue, Mu, Dickens, Borame L., Yoong, Joanne Su-yin, I-Cheng Chen, Mark, Teerawattananon, Yot, Cook, Alex R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lack of seasonality in influenza epidemics in the tropics makes the application of well-established temperate zone national vaccination plans challenging. We developed an individual-based simulation model to study optimal vaccination scheduling and assess cost-effectiveness of these vaccination schedules in scenarios of no influenza seasonality and the seasonality regimes of Singapore, Taipei, and Tokyo. The simulation models heterogeneities in human contact networks, levels of protective antibodies following infection, the effectiveness of the influenza vaccine, and seasonality. Using a no intervention baseline, we consider 3 alternative vaccination strategies: (1) annual vaccination for a percentage of the elderly, (2) biannual vaccination for a percentage of the elderly, and (3) annual vaccination for all elderly and a fraction of the remaining population. We considered 5 vaccination uptake rates for each strategy and modeled the estimated costs, quality-adjusted life years, and incremental cost-effectiveness ratios (ICERs), indicating the cost-effectiveness of each scenario. In Singapore, annual vaccination for a proportion of elderly is largely cost-effective. However, with fixed uptake rates, partial biannual vaccination for the elderly yields a higher ICER than partial annual vaccination for the elderly, resulting in a cost-ineffective ICER. The most optimal strategy is the total vaccination of all the elderly and a proportion of individuals from other age groups, which results in a cost-saving ICER. This finding is consistent across different seasonality regimes. Tropical countries like Singapore can have comparably cost-effective vaccination strategies as found in countries with winter epidemics. The vaccination of all the elderly and a proportion of other age groups is the most cost-effective strategy, supporting the need for an extensive national influenza vaccination program. •Influenza transmission in the tropics occurs year-round, and epidemics are less pronounced and less predictable than in areas where there is a peak influenza season.•Using equatorial Singapore as a case study, we developed a simulation model of influenza transmission that accounts for individual and population trajectories of antibodies after infection or vaccination and considered varying degrees of seasonal forcing.•This model was embedded within a health economic framework to assess the cost-effectiveness of once- and twice-yearly influenza vaccinations.
ISSN:1098-3015
1524-4733
DOI:10.1016/j.jval.2019.07.001