Drifting away. Seawater survival and stochastic transport of the invasive Carpobrotus edulis
Coastal areas are vulnerable and fluctuating habitats that include highly valuable spaces for habitat and species conservation and, at the same time, they are among the most invaded ecosystems worldwide. Occupying large areas within Mediterranean-climate coastlines, the “ecosystem engineer” Carpobro...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2020-04, Vol.712, p.135518-135518, Article 135518 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Coastal areas are vulnerable and fluctuating habitats that include highly valuable spaces for habitat and species conservation and, at the same time, they are among the most invaded ecosystems worldwide. Occupying large areas within Mediterranean-climate coastlines, the “ecosystem engineer” Carpobrotus edulis appears as a menace for coastal biodiversity and ecosystem services. By combining the observation, current distribution, glasshouse experiment, and dispersion modeling, we aim to achieve a better understanding of the successful invasion process and potential dispersion patterns of C. edulis.
We analyzed the response of plant propagules (seeds and plant fragments) to seawater immersion during increasing periods of time (up to 144 h). After 2 months of growth, plant fragments showed a total survival rate (100%) indicating high tolerance to salinity. During this time, fragment length was increased (up to 60%) and root length was higher than control in all cases. Also, immersed fragments consistently accumulated more biomass than control fragments. After two months of growth, photosynthetic parameters (Fv'/Fm', ΦNO, and ΦII) remained stable compared to control fragments. Physiologically, osmolyte and pigment content did not evidence significant changes regardless of immersion time.
Based on the capacity of propagules to survive seawater immersion, we modeled the potential transport of C. edulis by combining an oceanic model (ROMS-AGRIF) with a particle-tracking model. Results indicated that propagules may travel variable distances maintaining physiological viability. Our model suggested that short-scale circulation would be the dominant process, however, long-scale circulation of propagules may be successfully accomplished in |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2019.135518 |