3D printed nanomaterial-based electronic, biomedical, and bioelectronic devices

The ability to seamlessly integrate functional materials into three-dimensional (3D) constructs has been of significant interest, as it can enable the creation of multifunctional devices. Such integration can be achieved with a multiscale, multi-material 3D printing strategy. This technology has ena...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2020-04, Vol.31 (17), p.172001-172001
Hauptverfasser: Hales, Samuel, Tokita, Eric, Neupane, Rajan, Ghosh, Udayan, Elder, Brian, Wirthlin, Douglas, Kong, Yong Lin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to seamlessly integrate functional materials into three-dimensional (3D) constructs has been of significant interest, as it can enable the creation of multifunctional devices. Such integration can be achieved with a multiscale, multi-material 3D printing strategy. This technology has enabled the creation of unique devices such as personalized tissue regenerative scaffolds, biomedical implants, 3D electronic devices, and bionic constructs which are challenging to realize with conventional manufacturing processes. In particular, the incorporation of nanomaterials into 3D printed devices can endow a wide range of constructs with tailorable mechanical, chemical, and electrical functionalities. This review highlights the advances and unique possibilities in the fabrication of novel electronic, biomedical, and bioelectronic devices that are realized by the synergistic integration of nanomaterials with 3D printing technologies.
ISSN:0957-4484
1361-6528
DOI:10.1088/1361-6528/ab5f29