Anisotropic Two-Dimensional Screening at the Surface of Black Phosphorus

Electronic screening can have direct consequences for structural arrangements on the nanoscale, such as on the periodic ordering of adatoms on a surface. So far, such ordering phenomena have been explained in terms of isotropic screening of free electronlike systems. Here, we directly illustrate the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-11, Vol.123 (21), p.216403-216403, Article 216403
Hauptverfasser: Kiraly, Brian, Knol, Elze J, Volckaert, Klara, Biswas, Deepnarayan, Rudenko, Alexander N, Prishchenko, Danil A, Mazurenko, Vladimir G, Katsnelson, Mikhail I, Hofmann, Philip, Wegner, Daniel, Khajetoorians, Alexander A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electronic screening can have direct consequences for structural arrangements on the nanoscale, such as on the periodic ordering of adatoms on a surface. So far, such ordering phenomena have been explained in terms of isotropic screening of free electronlike systems. Here, we directly illustrate the structural consequences of anisotropic screening, making use of a highly anisotropic two-dimensional electron gas (2DEG) near the surface of black phosphorous. The presence of the 2DEG and its filling is controlled by adsorbed potassium atoms, which simultaneously serve to probe the electronic ordering. Using scanning tunneling microscopy, we show that the anisotropic screening leads to the formation of potassium chains with a well-defined orientation and spacing. We quantify the mean interaction potential utilizing statistical methods and find that the dimensionality and anisotropy of the screening is consistent with the presence of a band bending-induced 2DEG near the surface. The electronic dispersion of the 2DEG inferred by electronic ordering is consistent with that measured by angle-resolved photoemission spectroscopy.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.123.216403