Surface- and Strain-Mediated Reversible Phase Transformation in Quantum-Confined ZnO Nanowires

The phase stability of ZnO in a quantum-confinement size regime (sub-2-nm) remains fiercely debated. Applying in situ (scanning) transmission electron microscopy, we present the atomistic view of the phase transitions from the original wurtzite structure to an intermediate body-centered tetragonal a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-11, Vol.123 (21), p.216101-216101, Article 216101
Hauptverfasser: Zhao, Peili, Guan, Xiaoxi, Zheng, He, Jia, Shuangfeng, Li, Lei, Liu, Huihui, Zhao, Lulu, Sheng, Huaping, Meng, Weiwei, Zhuang, Yuanlin, Wu, Jiangbing, Li, Luying, Wang, Jianbo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The phase stability of ZnO in a quantum-confinement size regime (sub-2-nm) remains fiercely debated. Applying in situ (scanning) transmission electron microscopy, we present the atomistic view of the phase transitions from the original wurtzite structure to an intermediate body-centered tetragonal and h-MgO structure under tensile strain in quantum-confined ZnO nanowires. Strikingly, such structural transitions are reversible after releasing the stress. Further theoretical calculations mirror the transition pathway and provide basic insight into the overall landscape regarding surface- and strain-dependent phase transition behavior. Our results provide the critical piece to solve the puzzle in phase stability of ZnO, which may prove essential for advancing a variety of nanotechnologies, e.g., quantum-dot light-emitting devices.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.123.216101