Spatial Multiplexing of Squeezed Light by Coherence Diffusion

Spatially splitting nonclassical light beams is in principle prohibited due to noise contamination during beam splitting. We propose a platform based on thermal motion of atoms to realize spatial multiplexing of squeezed light. Light channels of separate spatial modes in an antirelaxation coated vap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2019-11, Vol.123 (20), p.203604-203604, Article 203604
Hauptverfasser: Sun, Jian, Zhang, Xichang, Qu, Weizhi, Mikhailov, Eugeniy E, Novikova, Irina, Shen, Heng, Xiao, Yanhong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatially splitting nonclassical light beams is in principle prohibited due to noise contamination during beam splitting. We propose a platform based on thermal motion of atoms to realize spatial multiplexing of squeezed light. Light channels of separate spatial modes in an antirelaxation coated vapor cell share the same long-lived atomic coherence jointly created by all channels through the coherent diffusion of atoms, which in turn enhances the individual channel's nonlinear process responsible for light squeezing. Consequently, it behaves as squeezed light in one optical channel transferring to other distant channels even with laser powers below the threshold for squeezed light generation. An array of squeezed light beams is created with low laser power ∼ milliwatt. This approach holds great promise for applications in a multinode quantum network and quantum enhanced technologies such as quantum imaging and sensing.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.123.203604