Low-dimensional chaos in a hydrodynamic system

Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experime...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phys. Rev. Lett.; (United States) 1983-10, Vol.51 (16), p.1442-1445
Hauptverfasser: BRANDSTÄTER, A, SWIFT, J, SWINNEY, H. L, WOLF, A, FARMER, J. D, JEN, E, CRUTCHFIELD, P. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow data. Computations of the largest Lyapunov exponent and metric entropy show that the system displays sensitive dependence on initial conditions. Although the phase space is very high dimensional, analysis of experimental data shows that motion is restricted to an attractor of dimension 5 for Reynolds numbers up to 30 percent above the onset of chaos. The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds number.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.51.1442