Regulation of α-synuclein by chaperones in mammalian cells
Neurodegeneration in patients with Parkinson’s disease is correlated with the occurrence of Lewy bodies—intracellular inclusions that contain aggregates of the intrinsically disordered protein α-synuclein 1 . The aggregation propensity of α-synuclein in cells is modulated by specific factors that in...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2020-01, Vol.577 (7788), p.127-132 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neurodegeneration in patients with Parkinson’s disease is correlated with the occurrence of Lewy bodies—intracellular inclusions that contain aggregates of the intrinsically disordered protein α-synuclein
1
. The aggregation propensity of α-synuclein in cells is modulated by specific factors that include post-translational modifications
2
,
3
, Abelson-kinase-mediated phosphorylation
4
,
5
and interactions with intracellular machineries such as molecular chaperones, although the underlying mechanisms are unclear
6
–
8
. Here we systematically characterize the interaction of molecular chaperones with α-synuclein in vitro as well as in cells at the atomic level. We find that six highly divergent molecular chaperones commonly recognize a canonical motif in α-synuclein, consisting of the N terminus and a segment around Tyr39, and hinder the aggregation of α-synuclein. NMR experiments
9
in cells show that the same transient interaction pattern is preserved inside living mammalian cells. Specific inhibition of the interactions between α-synuclein and the chaperone HSC70 and members of the HSP90 family, including HSP90β, results in transient membrane binding and triggers a remarkable re-localization of α-synuclein to the mitochondria and concomitant formation of aggregates. Phosphorylation of α-synuclein at Tyr39 directly impairs the interaction of α-synuclein with chaperones, thus providing a functional explanation for the role of Abelson kinase in Parkinson’s disease. Our results establish a master regulatory mechanism of α-synuclein function and aggregation in mammalian cells, extending the functional repertoire of molecular chaperones and highlighting new perspectives for therapeutic interventions for Parkinson’s disease.
Chaperones interact with a canonical motif in α-synuclein, which can be prevented by phosphorylation of α-synuclein at Tyr39, whereas inhibition of this interaction leads to the localization of α-synuclein to the mitochondria and aggregate formation. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/s41586-019-1808-9 |