Hesperetin ameliorates lipopolysaccharide-induced acute lung injury in mice through regulating the TLR4–MyD88–NF-κB signaling pathway
Hesperetin, a major bioflavonoid in sweet oranges and lemons, exerts an anti-inflammatory effect in pulmonary diseases; however, its effect on lipopolysaccharide (LPS)-induced acute lung injury is unclear. This study investigated the effect of hesperetin on LPS-induced lung inflammatory response. Mi...
Gespeichert in:
Veröffentlicht in: | Archives of pharmacal research 2019-12, Vol.42 (12), p.1063-1070 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Hesperetin, a major bioflavonoid in sweet oranges and lemons, exerts an anti-inflammatory effect in pulmonary diseases; however, its effect on lipopolysaccharide (LPS)-induced acute lung injury is unclear. This study investigated the effect of hesperetin on LPS-induced lung inflammatory response. Mice were intratracheally instilled with 5 mg/kg body weight LPS, and then were given hesperetin orally (10, 20, and 30 mg/kg body weight) 1 h later. Hesperetin dramatically suppressed the levels of interleukin-6 and tumor necrosis factor-α, as well as the number of inflammatory cells in bronchoalveolar lavage fluid. Besides, it reduced lung injury, wet weight/dry weight ratio, and myeloperoxidase and lactate dehydrogenase activities, and enhanced superoxide dismutase activity. In addition, hesperetin significantly downregulated the Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) protein expression and suppressed nuclear factor-kappa B (NF-κB) activation in lung tissue. Together, these results indicated that the anti-inflammatory effect of hesperetin is associated with the TLR4–MyD88–NF-κB pathway, and that hesperetin shows therapeutic potential for LPS-induced acute lung injury. |
---|---|
ISSN: | 0253-6269 1976-3786 |
DOI: | 10.1007/s12272-019-01200-6 |