Porcine Small Intestinal Submucosa Mitral Valve Material Responses Support Acute Somatic Growth
Background: Conceptually, a tissue engineered heart valve would be especially appealing in the pediatric setting since small size and somatic growth constraints would be alleviated. In this study, we utilized porcine small intestinal submucosa (PSIS) for valve replacement. Of note, we evaluated the...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2020-05, Vol.26 (9-10), p.475-489 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background:
Conceptually, a tissue engineered heart valve would be especially appealing in the pediatric setting since small size and somatic growth constraints would be alleviated. In this study, we utilized porcine small intestinal submucosa (PSIS) for valve replacement. Of note, we evaluated the material responses of PSIS and subsequently its acute function and somatic growth potential in the mitral position.
Methods and Results:
Material and mechanical assessment demonstrated that both fatigued 2ply (∼65 μm) and 4ply (∼110 μm) PSIS specimens exhibited similar failure mechanisms, but at an accelerated rate in the former. Specifically, the fatigued 2ply PSIS samples underwent noticeable fiber pullout and recruitment on the bioscaffold surface, leading to higher yield strength (
p
|
---|---|
ISSN: | 1937-3341 1937-335X |
DOI: | 10.1089/ten.tea.2019.0220 |