Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors
As a kind of typical soft and wet material, hydrogel has been increasingly investigated as another way to develop flexible electronics. However, the traditional hydrogel with poor strain and strength performance cannot meet the requirements for stretchable electronics; fabricating a stretchable hydr...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2020-01, Vol.12 (1), p.1577-1587 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a kind of typical soft and wet material, hydrogel has been increasingly investigated as another way to develop flexible electronics. However, the traditional hydrogel with poor strain and strength performance cannot meet the requirements for stretchable electronics; fabricating a stretchable hydrogel with balanced tensile strength, toughness, and conductivity is still a big challenge. Herein, a new type of physically cross-linked hydrogel with poly(acrylamide-co-acrylic acid)-Fe3+ and chitosan-SO4 2– dual ionic networks via facile free radical polymerization and soaking processes is developed to fabricate excellent high-performance flexible sensors. The abundant Fe3+ and SO4 2– ions in the hydrogel can not only construct tough and strong dual ionic networks but also give the hydrogel high conductivity. Consequently, the optimal hydrogel possesses high tensile strength (∼5.1 MPa), large strain capacity (∼1225%), elasticity (∼1.13 MPa), high toughness (∼32.1 MJ/m3), and high conductivity (3.04 S/m at f = 0.1M), as well as rapid self-recovery property. Furthermore, the hydrogel conductor has high stretching sensitivity with a gauge factor of 6.0 at strain of 700% and was able to detect conventional motions of the human body such as the motions of the knuckle, speaking, and swallowing, which indicates that our ionic conductive hydrogels can be used to fabricate excellent high-performance flexible sensors. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.9b18796 |