Dynamic Local Strain in Graphene Generated by Surface Acoustic Waves

We experimentally demonstrate that the Raman-active optical phonon modes of single-layer graphene can be modulated by the dynamic local strain created by surface acoustic waves (SAWs). In particular, the dynamic strain field of the SAW is shown to induce a Raman scattering intensity variation as lar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2020-01, Vol.20 (1), p.402-409
Hauptverfasser: Fandan, Rajveer, Pedrós, Jorge, Hernández-Mínguez, Alberto, Iikawa, Fernando, Santos, Paulo V, Boscá, Alberto, Calle, Fernando
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We experimentally demonstrate that the Raman-active optical phonon modes of single-layer graphene can be modulated by the dynamic local strain created by surface acoustic waves (SAWs). In particular, the dynamic strain field of the SAW is shown to induce a Raman scattering intensity variation as large as 15% and a phonon frequency shift of up to 10 cm–1 for the G band, for instance, for an effective hydrostatic strain of 0.24% generated in single-layer graphene atop a LiNbO3 piezoelectric substrate with a SAW resonator operating at a frequency of ∼400 MHz. Thus, we demonstrate that SAWs are powerful tools for modulating the optical and vibrational properties of supported graphene by means of the high-frequency localized deformations tailored by the acoustic transducers, which can also be extended to other 2D systems.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.9b04085